Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 95: 117504, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37871508

RESUMO

Mycobacterial ATP synthase is a validated therapeutic target for combating drug-resistant tuberculosis. Inhibition of this enzyme has been featured as an efficient strategy for the development of new antimycobacterial agents against drug-resistant pathogens. In this study, we synthesised and explored two distinct series of squaric acid analogues designed to inhibit mycobacterial ATP synthase. Among the extensive array of compounds investigated, members of the phenyl-substituted sub-library emerged as primary hits. To gain deeper insights into their mechanisms of action, we conducted advanced biological studies, focusing on the compounds displaying a direct binding of a nitrogen heteroatom to the phenyl ring, resulting in the highest potency. Our investigations into spontaneous mutants led to the validation of a single point mutation within the atpB gene (Rv1304), responsible for encoding the ATP synthase subunit a. This genetic alteration sheds light on the molecular basis of resistance to squaramides. Furthermore, we explored the possibility of synergy between squaramides and the reference drug clofazimine using a checkerboard assay, highlighting the promising avenue for enhancing the effectiveness of existing treatments through combined therapeutic approaches. This study contributes to the expansion of investigating squaramides as promising drug candidates in the ongoing battle against drug-resistant tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Trifosfato de Adenosina/metabolismo , Antituberculosos/química , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo
2.
Molecules ; 26(6)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799340

RESUMO

In this report, we employed the solid-phase synthetic approach to prepare variously substituted dihydropteridinones, tetrahydropyrrolopteridinones, and pyrimidodiazepinones, using a versatile building block-4,6-dichloro-5-nitropyrimidine. All these compounds are pharmacologically significant scaffolds of the great importance of medicinal chemists. The fast and efficient synthetic methodology is highly desirable for defining their structure-activity relationship (SAR) and optimizing pharmacokinetic properties. Our research efforts utilize simple synthetic methods to generate a library of analogues for future SAR studies. The efficiency of our approach was exemplified in various pteridinones as well as pyrimidodiazepinones.


Assuntos
Polímeros/química , Pteridinas/química , Preparações Farmacêuticas/química , Relação Estrutura-Atividade
3.
Eur J Med Chem ; 209: 112872, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33035923

RESUMO

In this review, we summarize the published data on squaric acid analogues with a special focus on their use in medicinal chemistry and as potential drugs. Squaric acid is an interesting small molecule with an almost perfectly square shape, and its analogues have a variety of biological activities that are enabled by the presence of significant H-bond donors and acceptors. Unfortunately, most of these compounds also exhibit reactive functionalities, and this deters the majority of medicinal chemists and pharmacologists from trying to use them in drug development. However, this group of compounds is experiencing a renaissance, and large numbers of them are being tested for antiprotozoal, antibacterial, antifungal, and antiviral activities. The most useful of these compounds exhibited IC50 values in the nanomolar range, which makes them promising drug candidates. In addition to these activities, their interactions with living systems were intensively explored, revealing that squaric acid analogues inhibit various enzymes and often serve as receptor antagonists and that the squaric acid moiety may be used as a non-classical isosteric replacement for other functional groups such as carboxylate. In summary, this review is focused on squaric acid and its analogues and their use in medicinal chemistry and should serve as a guide for other researchers in the field to demonstrate the potential of these compounds based on previous research.


Assuntos
Ciclobutanos/química , Ciclobutanos/farmacologia , Descoberta de Drogas , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Química Farmacêutica , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
4.
ACS Omega ; 4(21): 19314-19323, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31763555

RESUMO

This study reports two synthetic approaches leading to 2-aminobenzoxazoles and their N-substituted analogues. Our first synthetic strategy involves a reaction between various o-aminophenols and N-cyano-N-phenyl-p-toluenesulfonamide as a nonhazardous electrophilic cyanating agent in the presence of Lewis acid. The second synthetic approach uses the Smiles rearrangement upon activation of benzoxazole-2-thiol with chloroacetyl chloride. Both developed synthetic protocols are widely applicable, afford the desired aminobenzoxazoles in good to excellent yields, and use nontoxic and inexpensive starting material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA